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A mathematical model and a numerical technique have been proposed for calculating the thermal state of a
fragment of the outside log wall of a building. Temperature fields in homogeneous and inhomogeneous (filled
with a warmth-keeping agent) wooden cylindrical sets at a variable heat load on the surface have been es-
tablished and their comparative analysis has been performed.

Wood is now widely employed in residential and industrial building construction. This is due to its high
sanitary and hygienic indices, accessibility to many regions of Russia, and high workability. According to [1], the
use of homogeneous outside log walls in cold climatic zones requires an improvement of their thermotechnical char-
acteristics. To improve thermal-protection properties of the outside wooden wall, a method has been proposed in [2]
that which is based on filling the longitudinal axial opening of a homogeneous wooden log with a warmth-keeping
agent. Since, with the aid of standard procedures from [1], it is impossible to establish the mechanism of unsteady
heat transfer in inhomogeneous wooden structures, whose knowledge allows a purposeful improvement of their ther-
mal-protection properties, this problem should be solved using mathematical modeling relying on adequate mathemati-
cal models and efficient methods of solution. In connection with this, the aim of the current study is the
development of a mathematical model and a numerical technique for solving the problem of unsteady heat transfer in
homogeneous and inhomogeneous (filled with a warmth-keeping agent) logs that are fragments of the outside log
walls; the determination of the laws of unsteady heat transfer in them; and the comparative analysis of the efficiency
of their thermal-protection properties.

Physicomathematical Statement of the Problem. Consideration is given to heat transfer in the radial section
of a wood log with a warmth-keeping agent that is part of the outside wall enclosure, with a heat load on the bound-
ary rγ(ϕ) varying over the circumferential coordinate ϕ (Fig. 1). The shape of a homogeneous log and warmth-keeping
agent is represented by straight coaxial cylinders with radii R1 and R2. In the lower part of the log, there is a cut-out
specified by the technological conditions of the assembly of the log wall. Known are the radii of the log and warmth-
keeping agent, the distance between the centers O and O1 of the sections of neighboring logs ROO1

, and the thermo-
physical characteristics of wood and the warmth-keeping agent (the thermal conductivities in the radial (λr) and
circumferential (λϕ) directions, the density ρ, and the specific heat c). Conditions of the radiative-convective heat
transfer are fulfilled on the external boundary of the radial section CD, conditions of convective heat transfer — on
the internal boundary AB, and adiabatic conditions — on the lines AD and BC. Specified are the temperatures of ex-
ternal (Tg,e) and inside (Tg,ins) media, the heat-transfer coefficients on the outside (αw) and inside (α0) surfaces of a
log, and radiation parameters of the outside surface of a log (εw) and of the external medium (εe).

The coordinate of the boundary of the upper log rγ(ϕ) in its lower part at the place of its junction with the
lower log along the line AD is a variable dependent on the angle ϕ. The angle ϕs and the length of the radius vector
OM of an arbitrary point M on the line AD with the angle ϕ 2 [−ϕs, ϕ] were determined from geometrical consid-
erations on the basis of known R1, ROO1

, and ϕ using the equations

ϕs = arcsin √R1
2 − (ROO1

 ⁄ 2)2  ⁄ R1 ,   rγ (ϕ) = √xM
2  + yM

2  ,
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yM = 
− ROO1

 + √ROO1

2  − (1 + tan2 ϕ) (ROO1

2  − R1
2)

1 + tan
2
 ϕ

 ,   xM = − yM tan ϕ .

Heat transfer in the radial section of a log filled with a warmth-keeping agent was described using a mathe-
matical model, written in the cylindrical system of coordinates, which consisted of two nonlinear two-dimensional,
heat-conduction, equations for a homogeneous log and warmth-keeping agent:
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 ,   i = 1, 2 , (1)

with initial and boundary conditions

Tiτ=0
 = Tin (r, ϕ) ,   i = 1, 2 ; (2)
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r=rγ

 = αw (Tg,e − Tw) + σεeff (Tg,e
4

 − Tw
4 ) ,   ϕs ≤ ϕ ≤ π − ϕs ; (3)
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r=rγ

 = α0 (Tg,ins − T0) ,   π + ϕs ≤ ϕ ≤ 2π − ϕs ; (4)

∂T1
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r=rγ

 = 0 ,   (2π − ϕs < ϕ < ϕs) 2 (π − ϕs < ϕ < π + ϕs) ; (5)

Tiϕ=0
 = Tiϕ=2π

 ,   i = 1, 2 ; (6)

T1
r=R2

 = T2
r=R2

 ; (7)

Fig. 1. Diagram of the radial section of a log with a warmth-keeping agent.
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 . (8)

Subscripts 1 and 2 in mathematical model (1)–(8) characterize a homogeneous log and a warmth-keeping agent. On
the internal boundary of the latter, conditions (7) and (8) of the fourth kind are fulfilled. Boundary condition (6) is the
periodicity condition. The function εeff is calculated from the Christiansen equation εeff = (εe

−1 + εw
−1 − 1)−1.

Method of Solution of the Problem and Results of Numerical Calculations. The problem was solved nu-
merically using the splitting method of N. N. Yanenko [3]. One-dimensional equations of heat conduction in single-
layer (in the direction ϕ) and two-layer (in the direction r) regions, obtained as a result of splitting, were calculated
using the iteration-interpolation method [4, 5] with iterations with respect to coefficients with a specified accuracy. On
the boundary r = R2, use was made of special difference equations obtained by the iteration-interpolation method and
with account for the difference in the thermophysical properties of wood and the warmth-keeping agent. Since the con-
dition of symmetry at the center r = 0 is not fulfilled because of variability of the external heat load, the temperature
in the direction r was calculated with the boundary condition of the first kind at r = 0. In order to determine the tem-
perature at the center, a special iteration procedure was developed that is based on the solution, on each time layer, of
the heat balance equation for an elementary cylinder with axis r = 0 and cross-sectional radius much smaller than the
log radius.

The problem was solved numerically by the above algorithm using a program developed on the module prin-
ciple in the FORTRAN programming language for a personal computer. Individual program modules were tested on
the basis of analytical solutions known from the literature or obtained using the method of trial functions [5, 6]. The
number of nodes of splitting the difference grid in the radial direction was Nr = 51 and in the circumferential direction
Nϕ = 21, and the time step was hτ = 60 sec. The time of calculating the datum variant up to τfin = 72 h on a Pen-
tium-4 personal computer was no longer than 3 min. To ease the analysis of calculated results it was assumed that the
thermophysical characteristics of wood and the warmth-keeping agent are independent of the directions. For clarity, the
initial and calculated temperatures will be represented in oC.

The numerical study of the thermal state of a fragment of the outside log wall was carried out at the follow-
ing parameters: R1 = 0.1 m, R2 = 0.05 m, ROO1

 = 0.18 m, λ1 = 0.14 W/(m⋅K), ρ1 = 500 kg/m3, c1 = 2300 J/(kg⋅K),
λ2 = 0.04 W/(m⋅K), ρ2 = 80 kg/m3, c2 = 1470 J/(kg⋅K), tg.ins = 20oC, tg.e = −40oC, and tin = 20oC. The material of
the homogeneous log was pine tree and that of the warmth-keeping agent was foamed polyurethane.

Figures 2–6 present results calculated for a homogeneous log, and Figs. 7 and 8 give, for comparison, results
calculated for a log filled with a warmth-keeping agent.

The analysis of Fig. 2 indicates that temperature profiles on the surface are of a pronounced nonmonotonic
character.The nearly horizontal segments of the temperature curves correspond to the boundaries of contact of the log

Fig. 2. Temperature distribution over the surface of a homogeneous log with
respect to ϕ at various instants of time τ: 1) 0; 2) 1; 3) 5; 4) 72 h. t, oC; ϕ,
rad.
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surface with external and internal air media. At τfin = 72 h, heat transfer practically reaches a steady state. Over this
time, the temperature decreases from the initial tin = 20oC to 16.7oC on the inside surface at ϕ = 3/2π and to
−38.8oC on the outside surface at ϕ = π/2. On adiabatic surfaces at ϕ = 0 and ϕ = π the temperature decreases to
about −18.8oC. The temperature variation is the most substantial for angles ϕ from the ranges [−ϕs, ϕs] and [π − ϕs,
π + ϕs].

Figure 3 gives the temperature distribution with respect to radii of the most characteristic directions at τfin =
72 h (see Fig. 1). Clearly, the temperature distributions with respect to radii with angles 0 and π (curves 1 and 5),
ϕs and (π − ϕs) (curves 2 and 4), and (π + ϕs) and (2π − ϕs) (curves 6 and 8) are practically the same. The tempera-
ture difference along the length of radii with angles 0 and π (curves 1 and 5) is quite insignificant: it increases from
11.5oC at r = 0 to 11.8oC at r = rγ. For other radii, the temperature difference is noticeable: 24.9oC for curves 2
and 4, 23.2oC for curves 6 and 8, 27.4oC for curve 3, and 28.1oC for curve 7. Dependences 1 and 5 are close to
linear, and dependences 2–4 and 6–8 are close to parabolic, convex upward (curves 2, 4, and 7) and downward
(curves 3, 6, and 8).

The temperature distributions with respect to ϕ for various r (see Fig. 4) show that, with a distance from the
surface rγ(ϕ), the absolute values of the minima and maxima on the temperature curves corresponding to angles π/2
and 3/2 π decrease, and the temperature curves themselves become more smooth, which is due to the property of heat
conduction lying in a strong smoothing and the time lag of characteristic features of the boundary functions with dis-
tance from the heat-transfer surface.

Isotherms in Fig. 5 characterize the temperature distribution over the cross section of a homogeneous log at
τfin = 72 h. From Fig. 5 it follows that a major portion of the cross section is in the region of negative temperatures.
The minimum and maximum values of the temperatures for various r correspond to angles π/2 and 3/2 π.

Figure 6 presents time dependences of the heat fluxes through the inside (the line AB) and outside (the line
CD) open surfaces of a log. With a decrease in the temperature of the external air from 20oC to −40oC, the power of
the heat flux through the outside surface of a log (curve 2) initially rises sharply, reaching at τ = 1 h its maximum
value 44.7 W. Thereafter it begins to decrease, with the rate of decrease slowing down as a stationary value is ap-
proached. The power of the heat flux through the inside surface (curve 1) initially increases slowly, asymptotically ap-
proaching its stationary value. After heat conduction reaches a steady state, the powers of the heat fluxes through the
inside and outside surfaces of a log become equal and amount to 9 W.

Figure 7 shows the temperature distributions with respect to radii of the most characteristic directions at τfin
= 72 h for a log filled with a warmth-keeping agent. The designation of curves in Figs. 7 and 3 is the same. The

Fig. 3. Temperature distribution in a homogeneous log with respect to radii at
τfin = 72 h for various ϕ: 1) 0; 2) ϕs; 3) π/2; 4) (π − ϕs); 5) π; 6) (π + ϕs); 7)
3/2 π; 8) (2π − ϕs) rad; ϕs = 0.451 rad. t, oC.

Fig. 4. Temperature distribution in a homogeneous log with respect to ϕ at
τfin = 72 h for various r: 1) 1/5 rγ; 2) 2/5 rγ; 3) 3/5 rγ; 4) 4/5 rγ; 5) rγ. t, oC;
ϕ, rad.
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analysis of Fig. 7 shows that curves of the temperature distribution with respect to radii on the boundary of contact of
a homogeneous log filled with a warmth-keeping agent have an inflection. On this boundary, the temperature differ-
ence between a log filled with a warmth-keeping agent and a homogeneous log is at a maximum. The temperature dif-
ference is positive for the left half of the cross section facing the building and negative for the opposite half. Thus,
for example, on the ray with the angle ϕ = 3/2 π it is 6.1oC (the temperature values are 10.2oC for the log filled with
a warmth-keeping agent and 4.1oC for the homogeneous log), and on the ray with the angle ϕ = π/2 it is –5.4oC
(−32.5oC and −27.1oC, respectively). The boundary of the sign reversal of the temperature difference for a log filled
with a warmth-keeping agent agent and a homogeneous log lies practically at the center of the log. The temperatures
at the center of the homogeneous log and the log filled with a warmth-keeping agent differ insignificantly and at τfin
= 72 h are approximately equal to −11.5oC.

Isotherms in the cross section of the log filled with a warmth-keeping agent in Fig. 8 support conclusions
drawn from the analysis of Fig. 7. Comparison of Figs. 7 and 8 allows a rapid qualitative and quantitative assess-
ment of the effect of a warmth-keeping agent on the temperature field in the cross section of a log. The presence of

Fig. 5. Isotherms in the cross section of a homogeneous log. ϕ, rad.

Fig. 6. Heat fluxes through the inside (curve 1) and outside (curve 2) surfaces
of a homogeneous log as functions of time. Qγ, W; τ, h.

Fig. 7. Temperature distribution with respect to r in a log with a warmth-
keeping agent at τfin = 72 h for various ϕ. Legend 1–8, same as in Fig. 3;
ϕs = 0.451 rad. t, oC.

Fig. 8. Isotherms in the cross section of a log with a warmth-keeping agent at
τfin = 72 h. t, oC; ϕ, rad.
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a warmth-keeping agent leads to a reduction in the heat flux through the open outside surface of a log from 9.0 to
7.2 W.

Thus, based on the mathematical modeling of unsteady heat transfer in homogeneous and inhomogeneous logs,
the laws of the temperature distribution over cross sections have been disclosed, the heat fluxes through the inside and
outside open surfaces have been determined, and the comparative analysis of their thermal-protection efficiency has
been performed. The developed numerical technique provides rapid thermal diagnostics of the outside log walls, filled
for warmth-keeping, with different thermophysical and geometric characteristics of wood and a warmth-keeping agent
under different actual operational conditions.

This work was carried out in accordance with to the program of the Federal Education Agency "Development
of the Scientific Potential of Higher Schools" (subprogram 2. Applied Studies and Developments in Priority Directions
of Science and Technology), project code No. 7756.

NOTATION

c, specific heat, J/(kg⋅K); h, step of the difference grid; N, number of nodes of the difference grid; Q, heat
flux, W; r, radial variable of the cylindrical system of coordinates, m; R1, log radius, m; R2, radius of the cylindrical
insert of a warmth-keeping agent, m; ROO1

, distance between the centers of neighboring logs, m; rγ, coordinate of the
external boundary of a log dependent on ϕ, m; t, temperature, oC; T, temperature, K; xM and yM, Cartesian coordinates
of the point M, m; α, heat transfer coefficient, W/(m2⋅K); ε, emissivity factor; εeff, effective function of radiation pa-
rameters; ϕ, circumferential variable of the cylindrical system of coordinates, rad; ϕs, angle of half the arc of adiabatic
boundaries, rad; λ, thermal conductivity, W/(m⋅K); ρ, density, kg/m3; σ, Stefan–Boltzmann constant, W/(m2⋅K4); τ,
time, h. Subscripts: e, external medium; eff, effective; fin, final state; g, air; i, numbers of calculation regions; in, in-
itial state; ins, inside medium; r, radial direction; s, adiabatic surface; w, outside surface of a log; ϕ, circumferential
direction; γ, boundary; 0, inside surface of a log; 1, wood; 2, warmth-keeping agent.
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